Ag Madness: Basic Sheep Nutrition

April 13, 2020

Brady Campbell

OSU Department of Animal Sciences

CFAES

Christine Gelley

Noble County OSU Extension

THE OHIO STATE UNIVERSITY

AND ENVIRONMENTAL SCIENCES

It is a pleasure to meet you!

Outline

- Feeding requirements
- Feeding systems
- Grains
- Forages
- Mineral supplementation

Why feed livestock?

Thoughts from Dr. Francis Fluharty...

- Use the feed that you have?
- More income from grass or grain?
- Use grain more efficiently than grass?
- You like moving fence or cleaning pens?
- You might just like to produce a high demanding food animal protein?
- You enjoy a nice challenge?
- You love what you do!

Hierarchy of Nutrient Use

- Maintenance
- Development
- Growth
- Lactation
- Reproduction
- Fattening

Energy

- "defined as the potential to do work and can be measured only in its transformation from one form to another."
 - Energy demands change based upon: species, age, sex, climate, stage of production, and activity level.
 - Primarily produced from carbohydrates (starches)

Protein

- Crude Protein (CP) amount of protein (N) in a specific feed
- Metabolizable Protein (MP) true protein = dietary and microbial protein

Animals eat on a % BW and on a dry matter basis

- When feeding ruminant species, we feed microbial populations
- Production of Volatile Fatty Acids (VFA's)
- Grains vs. forages
- Effect of forage to concentrate ratio on rumen
 Volatile Fatty Acid ratios in feedlot cattle

Forage:Concentrate	Acetate	Propionate	Butyrate
Ratio	(%)	(%)	(%)
100:0	71.4	16.0	7.9
75:25	68.2	18.1	8.0
50:50	65.3	18.4	10.4
40:60	59.8	25.9	10.2
20:80	53.6	30.6	10.7

TDN – Total Digestible Nutrients

 Digestible carbohydrates + digestible crude protein + (digestible crude fat x 2.25) = TDN

<u>ADF</u> – Acid Detergent Fiber

- Indigestible portions of forages including:
 - <u>Cellulose</u>- a structural assembly of glucose particles that make up plant cell walls and are *resistant to breakdown* in the rumen.
 - <u>Lignin</u>- similar to cellulose but *cannot be broken* down in the rumen of grazing animals.

NDF – Neutral Detergent Fiber

- Structural components of the plant-
 - *hemicellulose, cellulose, and lignin
 - Levels as plants mature.
 - As NDF feed intake
 - Adds bulk or gut fill.
 - Too much is bad, but too little can also cause issues.

*Hemicellulose- structural carbohydrates with less complex bonds than cellulose, which allows for easier breakdown in the rumen.

Finishing Systems

Feedlot

- Advantages
 - Animal efficiency
 - Controlled environment
 - Days on feed
- Disadvantages
 - Facilities
 - Resources
 - Manure

Pasture

- Advantages
 - Utilize land efficiently
 - Niche markets
 - Lean carcasses
- Disadvantages
 - Parasites
 - Resources
 - Environment

CFAES

Effects of Energy Source in Feedlot Diet

3 Treatment Groups:

- Treatment #1: Ad lib. whole shelled corn (WSC)
- Treatment #2: Ad lib. alfalfa pellets (ALF)
- Treatment #3: Limit-fed whole shelled corn
- Diets: #1 → 85% WSC, 15% SUPP
 #2 → 90% ALF, 10% SUPP
 #3 → 80% WSC, 20% SUPP
- **Limit-fed diet fed at 85% of ad lib. diet
 - Adjusted every 2 weeks

Effects of Energy Source in Feedlot Diet

Growth and performance of finishing lambs

Item	Ad lib. WSC	Ad lib. ALF	Limit-fed WSC
Initial BW (lbs.)	66.4	66.4	66.6
Final BW (lbs.)	137.1	137.6	136.9
ADG (lbs./d)	0.82 ^b	0.64ª	0.68a
DMI (lbs./d)	3.2 ^b	4.4ª	2.9 ^c
Days on feed	87.5ª	110.2 ^b	104.8 ^b
G:F (lbs./lbs.)	0.26ª	0.15 ^c	0.24 ^b
Feed \$ of gain	0.43 ^c	2.10a	0.49 ^b

a, b, c means within a row with different superscripts differ (P < 0.05)

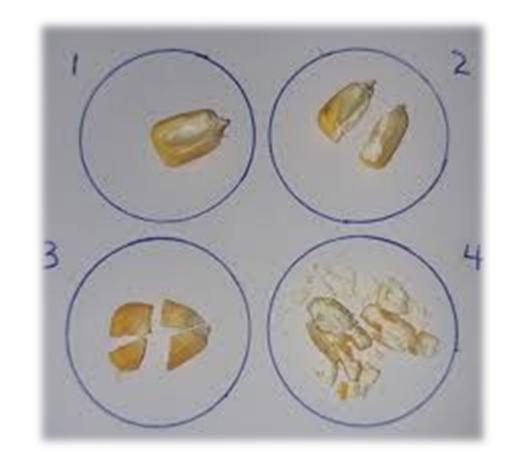
Effects of Energy Source in Feedlot Diet

Carcass characteristics of feedlot fed lambs

Item	Ad lib. WSC	Ad lib. ALF	Limit-fed WSC
Final BW (lbs.)	134.7	125.7	128.3
HCW (lbs.)	79.1 ª	70.6 ^b	75.7ª
Dressing %	60.6ª	53.8 ^b	58.4ª
Back fat (in)	0.38ª	0.20 ^b	0.35ª
LEA (in²)	2.72	2.49	2.87
BCTRC (%)	44.5	46.5	45.4

a, b, c means within a row with different superscripts differ (P < 0.05)

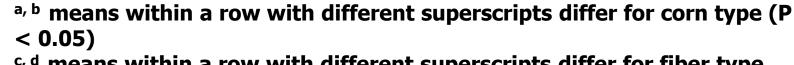
Corn Processing and Fiber Source


2 x 3 factorial design

Main effect #1

- 2 treatment groups
 - Treatment #1: corn type = ground corn
 - Treatment #2: corn type = whole shelled corn

Main effect #2


- 3 treatment groups
 - Treatment #1: fiber type = none
 - Treatment #2: fiber type = soybean hulls
 - Treatment #3: fiber type = peanut hulls
- All diets remained consistent with the exclusion of the main effects
 - Type of corn and fiber varied dependent upon treatment

Corn Processing and Fiber Source

Overall lamb performance (growing and finishing phases)

Item	GC	WSC
Initial wt. (lbs.)	53.4	53.4
DMI (lbs./day)	2.5	2.5
ADG (lbs./day)	0.69ª	0.72 ^b
G:F (lbs./lbs.)	0.27	0.28
Days on feed	77.4	75.1
Final wt. (lbs.)	107.4	107.6

 $^{c, d}$ means within a row with different superscripts differ for fiber type (P < 0.05)

On to you Christine!

Forages

Perennial Forages:

Can sheep be maintained on grass pasture alone?

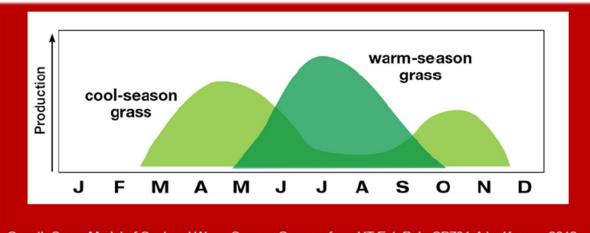
- Depends!
 - Protein content (> 7% CP)
 - Energy content (adequate TDN levels)
 - Forage maturity

Forages

Prefer a diversity of species

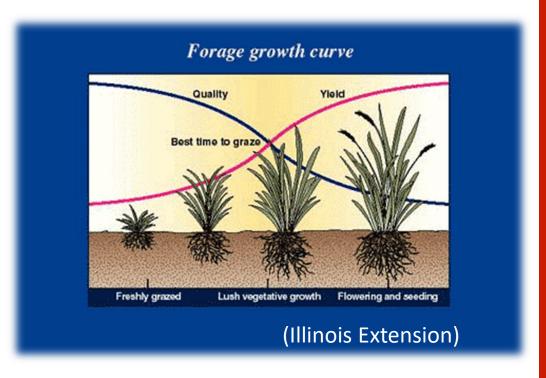
- Allows for preferential grazing
- Sheep prefer short, tender forages (selective grazers)
- Documentable benefit of having > 3
 forage species in a pasture from both
 an animal and pasture productivity
 standpoint is minimal.

C3 – cool season forages (temperate)


- Favors cool, wet conditions
- Ex. Tall fescue, orchardgrass, clovers, ect.
- Optimum temperature ~ 65°F 75°F
- Does not contain Kranz anatomy

<u>C4 – warm season forages (tropical)</u>

- Favors hot, dry conditions
- Ex. Native forages, bermudagrass, corn
- Optimum temperature ~ 90 °F 100°F
- Efficient at photosynthesis



CFAES

Growth Curve Model of Cool and Warm Season Grasses from UT Ext. Pub. SP731-A by Keyser, 2012.

- Best quality does not maximize yield.
- Maximum yield does not maximize quality.
- What is more important?
 - Quality or Yield?
 - What good is a plethora of poorquality forage?
- Manage for both quality and quantity.

Find Balance

Grass Quality by Maturity

With Maturity:

Protein

Fiber

Digestibility


	•
CFAES	

Stage	СР	ADF	NDF	RFV
Vegetative	18	33	<55	113
Early heading	16	36	58	106
Head (milk-dough)	11	38	63	91
Head (dough)	9	44	64	81
Mature	<8	>46	>65	<73

What affects dry matter intake of forages?

- Forage palatability and digestibility
 - Maturity → increased lignin concentration
 - Neutral Detergent Fiber (NDF)
 - Plant structure (C3 vs. C4)

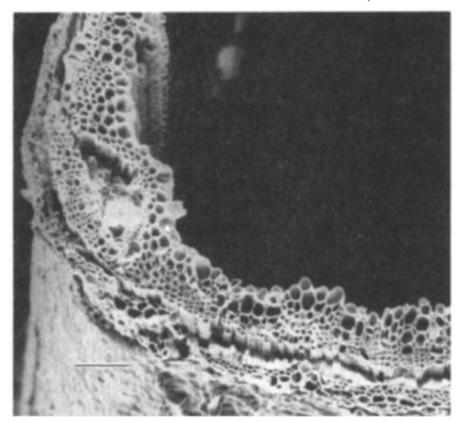
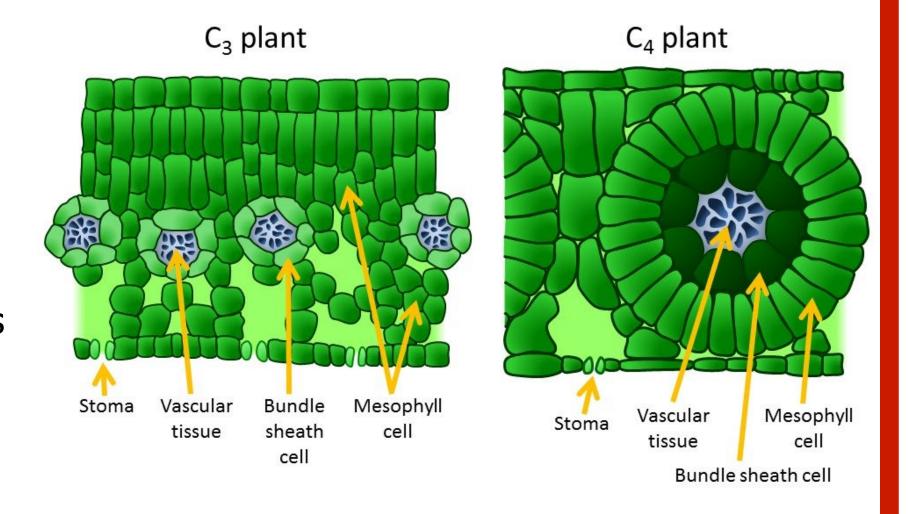
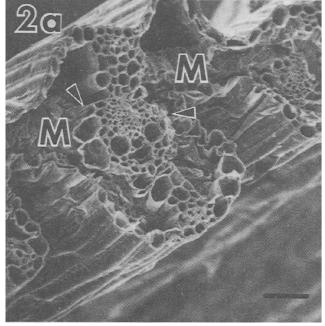



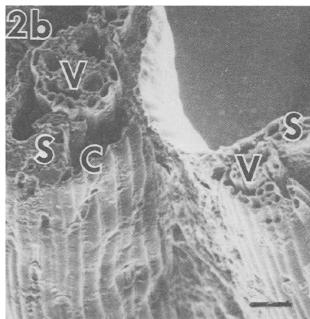
Fig. 4. Scanning electron micrograph of alfalfa stem incubated 48 h with rumen fluid. The residue consists of a ring of lignified bundle and interbundular cells. Parenchyma in the stem center is totally degraded. Bar = $100 \mu m$.

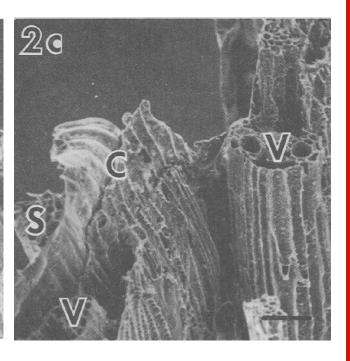
Akin, 1989

Plant structures

- Epidermis
- Mesophyll
- Schlerenchyma
- Vascular bundles




CFAES

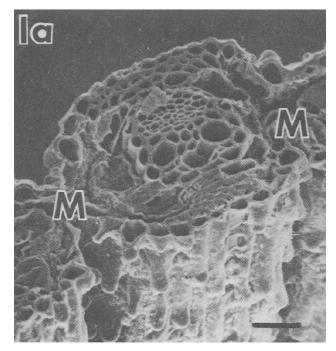

<u>Leaf tissue digestibility – Tall Fescue (C3)</u>

*Forages digest from the inside out!

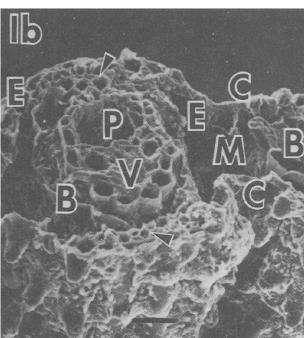
Akin, 1979

CFAES

Control


12 hr incubation with rumen fluid

72 hr incubation with rumen fluid


<u>Leaf tissue digestibility – Bermudagrass (C4)</u>

*Forages digest from the inside out!


Akin, 1979

Control

12 hr incubation with rumen fluid

72 hr incubation with rumen fluid

Forage Processing

Environmental Conditions (In order of importance)

- Sunshine (radiant energy)
- Relative Humidity
- Air temperature
- Wind
- Soil moisture

Forage Processing

Management Factors Affecting Drying Rate

- Cut early to maximize exposure to sun
- Mechanically condition all crops
- Spread in wide swaths
- Rake when crop is 50-60% DM
- Consider chemical conditioning

Forage Processing

Bale at Proper Dry Matter

Small rectangular bales 20% moisture

Large round bales 18% moisture

Large rectangular bales 16% moisture

CFAES

Too wet = spoilage Too dry = excessive shatter losses

Forages – Wet Wrapped / Baleage

- Ideal at 45-60% moisture
- Dense bales critical
- Wrap at least six times
- Wrap as soon as possible, same day
- When you feed, try to provide amount they will consume quickly

Back to you Brady!

Forage Nutrient Analysis Example #1

O.S.U. Extension-Fairfield Co. 831 College Ave., Suite D Lancaster, OH 43130-1081 Date Reported: 07/12/2019

Lab Number: 19-768 SAMPLE I.D.: Mixed Hay

Mixed First Cut

Item	Units .	As Sampled Basis	Dry Matter Basis
Moisture	8	10.64	
Dry Matter	8	89.36	
Crude Protein	8	6.12	6.85
Available Protein	8		
Adjusted Crude Protein	8		
A.D.F. Protein	8		
N.D.F. Protein	8		
Soluble Protein	8		
Protein Solubility	8		
Lignin	8		
Acid Detergent Fiber	8	46.14	51.63
Neutral Detergent Fiber	8	58.54	65.51
NFC (Non-Fiber Carbohydrate)	8		
Sugar	8		
Starch	8		
NSC = Starch + Sugar	8		
Crude Fat	8		
TDN	8	33.97	38.02
NE1	Mcal/lb	329	.368
NEm	Mcal/lb	214	.240
NEg	Mcal/lb	002	.002

Forage Nutrient Analysis Example #2

1 Brassica 11-8-17 B1 Dry Matter 13.48% Moisture 86.52%

Description (%DM unless specified)	Dry Matter Basis	Grasse 60 dy Avg	s 4 yr Avg		
Crude Protein	23.02	12.39	13.70		
ADF	24.77	38.67	38.08		
aNDF	32.22	57.53	56.60		
Calcium	1.29	0.57	0.63		
Phosphorus	0.46	0.26			
Magnesium	0.34	0.26			
Potassium	4.42	1.95	2.41		
Sulfur	0.45	0.16	0.19		
Starch	4.12		9.15		
NDF Digest.: Traditional=Goering & Van Soest Method, Standardized=Combs-Goeser Method					
Traditional NDFD 48, %NDF	29.96	58.62	62.06		
Calculations					
TDN 1X	72.78				
NEL 3x, Mcal/lb	0.713				
NEG, Mcal/lb	0.555				
NEM, Mcal/lb	0.842				
RFV	201		100		
NFC	29.00				

Changes in Forage Quality Table 1: Summary

Forage type	Collection date	Crude Protein (%)	NDF	TDN (%)
Brassica	11/08/2017	23.02	29.96	72.78
Brassica	12/13/2017	20.50	30.25	70.25
Oats	11/08/2017	25.20	53.99	73.12
Oats	12/13/2017	17.63	44.75	59.40
Stockpiled Fescue	11/08/2017	14.61	57.82	68.64
Stockpiled Fescue	12/13/2017	11.09	51.97	64.34

Predicted Energy Demands *Maintenance*

Table 2: Calculated TDN requirements for a 154 lb. ewe using forage TDN values from 11/08/2017

Animal Class (Ewe – 154 lbs.)	Estimated Intake* (lbs./d)	Required TDN (lbs./d)	Brassica	Oats	Stockpiled Pasture
Maintenance	2.59	1.36	1.89	1.89	1.78

^{*} Estimates derived from the Small Ruminant NRC, 2007

Predicted Energy Demands Early Gestation

Table 3: Calculated TDN requirements for a 154 lb. ewe using forage TDN values from 11/08/2017

Animal Class (Ewe – 154 lbs.)	Estimated Intake* (lbs./d)	Required TDN (lbs./d)	Brassica	Oats	Stockpiled Pasture
Early Gestation (single)	3.22	1.72	2.34	2.35	2.21
Early Gestation (twins)	3.71	1.96	2.70	2.71	2.55
Early Gestation (triplets)	4.02	2.13	2.93	2.94	2.76

^{*} Estimates derived from the Small Ruminant NRC, 2007

Predicted Energy DemandsLate Gestation

Table 4: Calculated TDN requirements for a 154 lb. ewe using forage TDN values from 11/08/2017

Animal Class (Ewe – 154 lbs.)	Estimated Intake* (lbs./d)	Required TDN (lbs./d)	Brassica	Oats	Stockpiled Pasture
Late Gestation (single)	3.97	2.11	2.89	2.90	2.73
Late Gestation (twins)	4.02	2.66	2.93	2.94	2.76
Late Gestation (triplets)	4.56	3.01	3.32	3.33	3.13

^{*} Estimates derived from the Small Ruminant NRC, 2007

Predicted Energy Demands-November Summary

Table 5: Calculated TDN requirements for a 154 lb. ewe using forage TDN values from 11/08/2017

Animal Class (Ewe – 154 lbs.)	Estimated Intake* (lbs./d)	Required TDN (lbs./d)	Brassica	Oats	Stockpiled Pasture
Maintenance	2.59	1.36	1.89	1.89	1.78
Early Gestation (single)	3.22	1.72	2.34	2.35	2.21
Early Gestation (twins)	3.71	1.96	2.70	2.71	2.55
Early Gestation (triplets)	4.02	2.13	2.93	2.94	2.76
Late Gestation (single)	3.97	2.11	2.89	2.90	2.73
Late Gestation (twins)	4.02	2.66	2.93	2.94	2.76
Late Gestation (triplets)	4.56	3.01	3.32	3.33	3.13

CFAES

^{*} Estimates derived from the Small Ruminant NRC, 2007

Predicted Energy Demands-December Summary

Table 6: Calculated TDN requirements for a 154 lb. ewe using forage TDN values from 12/13/2017

Animal Class (Ewe – 154 lbs.)	Estimated Intake* (lbs./d)	Required TDN (lbs./d)	Brassica	Oats	Stockpiled Pasture
Maintenance	2.59	1.36	1.82	1.53	1.67
Early Gestation (single)	3.22	1.72	2.26	1.91	2.07
Early Gestation (twins)	3.71	1.96	2.61	2.20	2.39
Early Gestation (triplets)	4.02	2.13	2.82	2.39	2.59
Late Gestation (single)	3.97	2.11	2.79	2.36	2.55
Late Gestation (twins)	4.02	2.66	2.82	2.39	2.59
Late Gestation (triplets)	4.56	3.01	3.20	2.71	2.93

CFAES

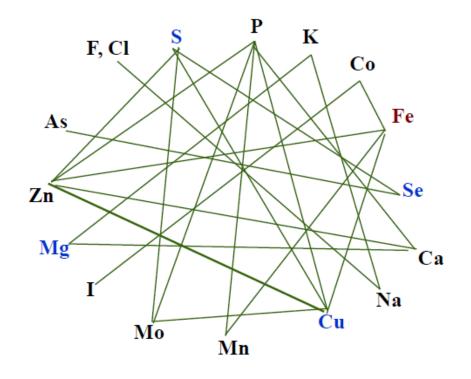
^{*} Estimates derived from the Small Ruminant NRC, 2007

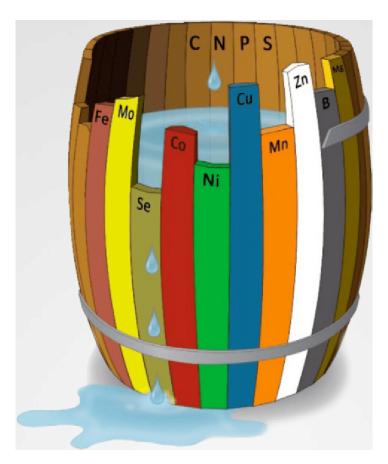
Mineral should **ALWAYS** be available

Why?

- Zinc foot health, eye health, growth, immunity, parasites
- Selenium muscle development, immunity, growth
- Copper bone formation, growth, foot health, parasites

Mineral interactions


Mineral bioavailability


How is the mineral being provided?

Trace Mineral Interactions

Liebig's barrel – Liebig's Law of the Minimum

Mineral bio-availability:

Relative Bioavailability of Microminerals from Different Sources

Mineral	Sulfate- form	Oxide- form	Carbonate	Chloride- form	Organic-form (complex, chelate)
Copper	100	0	_	105	130
Manganese	100	58	28	_	176
Zinc	100	_	60	40	159 to 206

¹Availability relative to that of the sulfate form. Adapted from Greene, 1995.

Source: http://pubsadmin.caes.uga.edu/files/pdf/B%20895 2.PDF

Effect of mineral form on lamb ADG during the grazing period

Item	Loose	Block
AVG salt intake (oz./lamb/d)	0.010 ^a	0.005 ^b

Ragen et al., 2015

Item	Loose Mineral	Block Mineral
Initial BW (lbs.)	52.3	52.3
Final BW (lbs.)	79.4ª	74.7 ^b
Overall ADG (lbs./d)	0.43ª	0.35 ^b

Campbell et al., 2017

^{a, b, c} means within a row with different superscripts differ (P < 0.05)

CFAES

Conclusions

- In general, lambs fed high concentrate diets perform better when compared to others fed forages
 - However this is not always the case!
- The processing of feedstuffs can affect lamb performance and feed digestibility
- Grain fed vs. forage fed lambs?
 - Lean vs. Fat deposition
- Diet will be dependent upon resource availability, market access, and personal preference

Noble County OSU Extension 46049 Marietta Rd., Suite 2, Caldwell, OH 43724 740-732-5681 Office gelley.2@osu.edu https://noble.osu.edu

CFAES

Program Coordinator | OSU Sheep Team 112 Gerlaugh Hall, 1680 Madison Ave., Wooster, OH 44691 (740) 434-3252 Mobile campbell.1279@osu.edu https://u.osu.edu/sheep/